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Série 3b Solutions

Exercise 3b.1 - Thermal effects

Consider the squared cross-section axial bar of Figure 3b.1. The thermal expansion coefficients of
the material is 10 - 107 K~! and its Young modulus is 40 GPa. The initial temperature is room
temperature (25°C). The tensile load is 480 N.

(a) (b)

10 cm

F s F

Figure 3b.1 | (a) Loaded bar, (b) Clamped bar.

- We put the bar in a 500°C furnace (Figure 3b.1.a).
a) Determine the total longitudinal elongation
b) Determine the strain energy density of the bar
- Still in the furnace, we clamp the bar on its longitudinal ends (Figure 3b.1.b) and, from the
furnace, put it in liquid Nitrogen (-200°C).
NB- 1t is not anymore submitted to the external load F.
c) Determine the value of the induced stress due to temperature in the bar.
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Solution 3b.1

What is given?
Thermal expansion coefficienta = 10 - 107¢ K1
Young Modulus E=40 GPa
Room temperature T, = 25 °C
Furnace temperature Ty = 500 °C
Liquid nitrogen environment temperature: Room temperature T, = —200 °C
Longitudinal cross-section of the material A = 4 cm?
Load F = 480 N

Assumptions
The material is homogeneous and isotropic

What is asked?

a) Total longitudinal elongation
b) Stress energy density of the bar

c) Stress induced in the bar by cooling

Principles and formula

Hooke’s law

o =Ee¢ ey
Where E is the Young modulus of the material that composes the bar, ¢ is the normal stress

resulting from the load applied to the bar, and ¢ is the normal strain resulting from the load applied to
the bar.

Strain definition

AL
S — 2
€ I (2)
AL is the normal deformation, and L, is the initial length of the bar.
Stress definition
N
— 3
o= (3)
N is the internal force, and A is the cross section area.
Thermal strain
&rp = adT 4)

&rp is the thermal strain, a is the thermal expansion coefficient of the material, AT is the
temperature variation between two states in thermal equilibria.

Strain energy density of the bar

1
Up = EE(gtot - STh)Z (5)

Uy is the strain energy density of the bar, &, is the total strain of the bar, and &7, is the thermal
strain of the bar.
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Calculations

a) Inthissection AT = T; — T,,. We calculate the load deformation thanks to Hooke’s law and stress
and deformation definitions.
N F AL F-L
c=E-¢e>5—=—=— -E-> AL =
A A Ly E-A
Using Eq. (6) and Eq. (4), we can calculate the total deformation, which is caused by both
mechanical and thermal load. We apply the superposition principle and:

(6)

F-L
AL,y = AL + epplg = E—: + aLoAT (7

b) We can now rewrite Eq. (5) in terms of strain:
ALy AL F
8t0t=L—OD=L—O+€Th=m+ OIAT:SF'i'ETh (8)
where &7, is the strain caused by the thermal expansion and & is the strain caused by the load F.
Therefore the strain energy is given by:

1 1 1 F \?
UOZEE(Etot—ETh)ZZEESPZ‘:EE(_E_A> 9

c) Inthissection AT = T, — T;. Since the beam is clamped, we can see that the &, = 0, thus:

o
Etot = Emech + Ern = 7 + e, =0->0=—Eep, = —EadT (10)
State your answer
a)
ALy = —— + a(4T)Ly =
480-10- 107 +10-1075-475-10- 1072 = 478
40-10°-4-10-% = H/oum
b)
1 480 2 ]
=—4 .19.< ) = 18 — (12)
Uo 2 0-10 40-10%-4-10~* 8m3
c)
o =-40-10%-10-107°-(=700) = 280 MPa (13)

The mechanical stress that builds up in the bar when cooling down is 280 MPa tensile.
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Exercise 3b.2 - Plane Stress

A square plate of width b and thickness ¢ is loaded by normal forces Fy and F,, and by shear forces
V, as shown in Figure 3b.2. These forces produce uniformly distributed stresses acting on the side faces
of the plate. Calculate the change in the volume AV = V41 — Vinitiq; 0f the plate and strain energy
U stored in the plate if the dimensions are b = 600 mm and t = 40 mm, the plate is made of
magnesium with £ = 45 GPa and v = 0.35, and the forces are F, = 480 kN, E, =180 kN, and V =
120 kN.

Formula for strain energy density in two dimensions.

1
U =3 (0xex + 0y8y + TayVry) (1)

‘//

N

>

QS
\
n

Figure 3b.2 | Loads on a cube
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Solution 3b.2

Given:

A block with multiple normal and shear loads, see in figure 3b.2:

b = 600 mm
t =40mm
E =45 GPa
v =0.35

FE, = 480 kN
F, = 180 kN
V =120 kN

What is asked:

a) Change in volume, Vfinq1 — Vinitiai-
b) Strain energy stored in the block.
Solution:

a) The stresses in the material can be directly calculated from the loads, i.e.:

N, F, Fy _F, F, Vv

=" —— = = —" —_ — = — 2
T AT AT YT AT T AT bt (2)

As we know from theory, applying the strain equations from the compliance matrix to Eq. (2) we
can derive the following equation:

Vrinat = Vinitiar (1 = 2v)
Vinitial E
Inserting values for the initial volume Vi,;tiq = b? - t, 0, and gy into Eq. (3) we obtain the
following:

(ax +o0,+ az) (3)

(1-2v) (1-2v)
Viinar = Vinitiat = (b - t) - - b) (Fo+F)) = bT(Fx +F,) (4)
1-2-0.35 9 3
Veinar — Vinitiat = 600 mm - ———— (480 kN + 180 kN) = 4 - 660 - 107" m (5)
45 GPa
Vrinat = Vinitial = 2.64 - 10~°m’ (6)
b) Using Eq. (1) and substituting strains with stresses with 3D Hooke’s law, we are left with the
following:
_ 1ol 2 Ty (7)
Ug = ﬁ(ax +o0y — vaxay) + G
G = £ 8
T 21 +v) (8)
Inserting the stresses from Eq. (2) into (7), we get the following:
1 (7 EN\* [F\ Fo\(E 1V \?
= — ) —2v(= )= - (—
Yo =2 (t-b) +(t-b) v(t-b)(t-b) +26(t-b) )
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uy = 4653 Pa = 4653 J /m3 (10)

Remember that u is the strain energy density, so the final result is:

J

U=uy Vinitias = 4653m- 6002 mm? - 40 mm = 67 ] (11)

Also keep in mind that the relative change in volume is very small so it is not going to make a
difference whether we consider Vi;tiq; OF Vying in Eq. (11).
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Exercise 3b.3 - Hybrid stiffness — 3D structure

A block of rubber (R on Figure 3b.3) is confined in a slot inside a steel block (S on Figure 3b.3). A
uniform pressure p, applied on the top of the rubber block induces a deformation. The rubber’s Young’s

modulus E and the rubber’s Poisson’s ratio v are known.
a) Give an expression for the pressure along x axis on the block induced by p, and calculate

its value
= NB - We will neglect friction effects

b) Give an expression for the dilatation e of the rubber and calculate its value
= NB - The dilatation is also called the relative volume variation, i.e. e = %

c) Find the strain-energy density u, of the rubber

Numerical values: py = 5.0 MPa; E = 15.0 GPa; v = 0.50

Ps Po
y
i ALELLLAAY y
x - g R 1
Z
X
S
Figure 3b.3| Block of rubber in a steel block
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Solution 3b.3

What is given?
Pressure p, = 5.0 MPa
Young’s modulus E = 15.0 GPa
Poisson’s ratio v = 0.50

What is asked

a) A formula for the lateral pressure on the block induced by p, and calculate its value
b) A formula for the dilatation e of the rubber and calculate its value
c) The strain-energy density u, of the rubber

Equations required

We will use the generalized Hooke'’s law, or compliance matrix:

£ = %(O—x —v(a, + UZ)); Yay = Tx?y; etc ... (1)
Where E is the Young’s modulus of the material, v is the Poisson’s ratio, ¢, is the axial strain in the
x-direction, and o, is the normal stress parallel to the x-axis, 74, and y,, are the shear stress and strain
on the plane xy, and G is the shear modulus of the material. We then define the strain energy density in

three dimensions:

1 v 1
Uy === (0% + 02 + 07) — = (040, + 0,0, + 0,0,) + = (12, + 1%, + T2) (2)
2E E 2G
We can also write the volume relative variation in relation with the stress components:

AV 1-2v
Vv E

(ox + 0y +0,) (3)

Calculations

a) The pressure is opposed to the internal stress of the material. We are looking for the pressure
p along the x-direction.

Px = —0x (4)
We have been given the pressure in the y-direction.
po = —0y (5)

Then, no stress is induced in the z-direction, and being clamped, no strain can occur in the x
direction:

0,=06,=0 (6)
We apply the general Hooke’s law.
1
Ex = i (O’x — v(ay + O'Z)) (7)
i.e. using (4), (5) and (6) in (7):
Ex=0=-p — v(—po) (8)
Thus,
Px = VDo (9)
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b)
AV 1-2v
vV - F (0x + 0y +0,) (10)
i.e.
AV 1-2v A =2v)(A +v)p, 11
v = Px—Po)=- I (11)

c) Using the formula of the strain energy, we substitute the different components of stress in all the
directions. There is no shear due to the wall constraint and only the y direction contributes:

1
up =5 (1- v2)ph (12)
State your answer
a) The lateral pressure is:
Py = Vpo = 2.5 MPa (13)

b) The relative change in volume is:

v (1 -2v)(1+v)py 0
Vo E B
There is no volume variation. The rubber keeps the same properties.

(14)

c) The strain energy density (in 3D) is:

1 11-0.52 N Ji
= (1- vA)p? = EW52 -10'2 Pa = 625 Pa = 625 —3 =625~ (15)

u0=2—
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Exercise 3b.4 - Bars and spring in series

A system 1) is composed of two different bars while a similar system 2) is instead formed by a spring
and a bar, as shown in the Figure 3b.4 Both systems are loaded with forces in A, B and C, and the
materials are considered isotropic.

a) Draw the Free Body Diagram of the two systems

Provided the numerical values for the systems:
1) A=3cm? A, =2cm?E =25GPa,L =10cm,F; =30 kN,F, = 45 kN,F; = 75kN
2) A=3cm? E =25GPa,L =10cm,F;, = 30 kN,F, = 45kN,F; = 75kN,k, =1+ 108’:—3

b) Calculate the deformation of the two different systems
A

Fy
F 3 A
F,
L —— ALE L A
= =k
X Bo 7 B ks
IFZ FZ
2L 2L
Y CIFS v CIFS
A - AE A — AE
2L 2L
v D _ T" v DIR T"
ERnnEsEnnsnsna—— Eoooonnooo ooy
1) 2) @ e

Figure 3b.4 | Composite posts: 1) bar/bar and 2) spring/bar
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Solution 3b.4

a) The FBD is equal for both the systems since the spring can be seen as a bar

D

The structure can be divided as shown in figure 3b4.1 in order to calculate the internal forces:

IFI Fl IFI IFl
A' _

A A A
B _ lNg B, B o
IFZ ‘ IFZ F2
2 l
—— - N2
F.
IF3 CI 3
C ]
o, |

Figure 3b.4.1 | Composite posts: cuts to be done

What are the Egs. that are required?
The stiffness of a segment CD:
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o = AE (1)
o=
The stiffness of a segment CB:
AE
kep = — (2)
Lcp
The stiffness of a segment AB, system a):
AE
kap = (3)
Lap

While for system 2) is it equal to the stiffness of the spring k,

Where A and A, are the cross-section area of segments, Lyg, Lcg and L¢p, are the length and E the
Young's modulus.

The internal force of a segment with respect to the displacement:

N = kA (4)
Find Reaction at Point D

Z F. =0 (5)

—Rp +75kN —45kN +30kN =0 — R, = 60 kN (6)

b) The deformation of the two systems can be calculated using

N;L; 1/N;*2L N,*2L N3x*L
5. — i l=_( 1 2 3 ) (7)
@ Li AE E\ A Tt A,
L
1 /N;*2L N, x2L N
6y =5 (= )+ 2 (8)
E A A ks
From figure 3b.4.1 can be seen that:
N, = =15 kN

Plugging the numbers in (7) and (8) can be calculated the displacement:

5 = 1 60 %103 % 0.2 15*103*0.2+30*103*0.1 — 0.0018 = 1.8 9
@ = 925%10°\ 3+10-4 3+ 104 2%10-% ) - Lemm ®)
PR 6010 x0.2 15+ 10°*0.2 30*103_00015_15 10
b= 25%109\ 3x10-* 3+10-* 108 - Lomm (10)
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Exercise 3b.5 - Composed post

A post is composed of two different elements: a cube of height 3L between C and E (Young’s
modulus Ecg) and a square based tempered post with a of height 6L between A and C (Young’s modulus
Eac). As shown in figure 3b.5, the section varies from A (side length 2L) to C (side length 3L) and two
forces are applied to the system at point A and C. The amplitude of the force at point C is 2F and the
amplitude of the force at point A is F. The materials are considered isotropic.

a) Draw the Free Body Diagram of the system and calculate the reaction force(s)
b) Calculate the value of the stress and strain of the post at section D

c) Calculate the value of the stress and strain of the post at section B

d) Calculate the deformation of the segment AC

dx B 1
(a+bx)2 b(a+bx)

Mathematical Hint : f

Section A
T g
I ] 21
1
1
L
i B
Y e Material AC
o /\/
Section C
P ENl
- -
TR |
1
2L
Y I T e -
3L D Material CE
¥ I I E
—

Figure 3b.5| Composed post
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Solution 3b.5

a) Draw the Free Body Diagram of the system and calculate the reaction force(s).

Apply force equilibrium Eqg. to the entire structure and evaluate Rg.

F

2F
Z F,=0-—Rg+2F—F=0-Rg=F

b) Calculate the value of the stress and strain of the post at section D

For the segment from E to D the area of the section is:

A= (3L)> =912

_____________ [
, | ‘ RE

Z Fy:()_) _RE+ND=0 ND=RE=F

Segment DE

For the evaluation of the stress and the strain of the post at section D

_ND _ F
=%, T oz
Strain is:
op F

= 92E

(2)

Conception de Mécanismes I - 2024 Page 14 of 16

© EPFL-STI-SMT



Danick Briand Solutions CdM1 Série 3b

cPrFL

c) Calculate the value of the stress and strain of the post at section B

Segment AB

Z E,=0——F+-N;=0- Ny =—F

For the segment from A to C the dimension of the square follows these formulas:

1o 1)

2

=42

or

) =1(3-2)

6L
ly 2
0= (0- )
) 3 61
The area of section B is:
A(L)—L2(2+ L)2—169 2
N 6L) 36
or
AGSL) = 12 (3 SL)2 169
N 6L) 36

For the evaluation of the stress and the strain of the post at section B
Ng —F 36F

A, 169, 16912
36

O-B:

Strain is:

Op 36F
8 T E. T T 16912E,,

(5)

(10)
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cPrFL

d) Calculate the deformation of the segment AC

Since the section varies along the axis is necessary to integrate between the tip of the post A and

the section C.

The elongation can be evaluated with:

—Fd

s = —2_
ExcA(y)

By integrating (from A to C):

6L —Fdy
8ac = f
0

ExcA(y)
6L
5 —F (¢ dy F 6L
AC = == -
EAcLZJ;) l 2 EAcLz 2 _|_ l
(2+2) 6Ll
= F (=2L+3L) = L _ F
T Eycl? " Epcl? Epcl
Or (from C to A)
P f“ —Fdy
Tl EacAR)
6L
3 F f6L dy 3 F 6L 3 F (—2L+31) =
ac Excl? ), ( _L)Z Epcl?| 3 Epcl?
6L 6L1,
F
The segment AC is compressed and shortens of a quantity equal to: P
AC

(11)

FL _ F
Excl?2 Eucl
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