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Série 3b  Solutions 

Exercise 3b.1 – Thermal effects  

Consider the squared cross-section axial bar of Figure 3b.1. The thermal expansion coefficients of 

the material is 10 · 10−6 𝐾−1 and its Young modulus is 40 GPa. The initial temperature is room 

temperature (25°C). The tensile load is 480 N. 

(a) 

 

(b) 

 

Figure 3b.1 | (a) Loaded bar, (b) Clamped bar. 

 

- We put the bar in a 500°C furnace (Figure 3b.1.a). 

a) Determine the total longitudinal elongation  

b) Determine the strain energy density of the bar 

- Still in the furnace, we clamp the bar on its longitudinal ends (Figure 3b.1.b) and, from the 

furnace, put it in liquid Nitrogen (-200°C).  

NB- It is not anymore submitted to the external load F.  

c) Determine the value of the induced stress due to temperature in the bar. 
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Solution 3b.1 

What is given? 

Thermal expansion coefficient 𝛼 = 10 · 10−6 𝐾−1 

Young Modulus 𝐸=40 GPa 

Room temperature 𝑇0 = 25 °𝐶 

Furnace temperature 𝑇1 = 500 °𝐶 

Liquid nitrogen environment temperature: Room temperature 𝑇2 = −200 °𝐶 

Longitudinal cross-section of the material 𝐴 = 4 𝑐𝑚2 

Load 𝐹 = 480 𝑁 

Assumptions 

The material is homogeneous and isotropic 

What is asked? 

a) Total longitudinal elongation 

b) Stress energy density of the bar 

c) Stress induced in the bar by cooling 

Principles and formula 

Hooke’s law 

𝜎 = 𝐸𝜀 (1)  

Where 𝐸 is the Young modulus of the material that composes the bar, 𝜎 is the normal stress 

resulting from the load applied to the bar, and 𝜀 is the normal strain resulting from the load applied to 

the bar. 

Strain definition 

𝜀 =
𝛥𝐿

𝐿0
 (2)  

𝛥𝐿 is the normal deformation, and 𝐿0 is the initial length of the bar. 

Stress definition 

𝜎 =
𝑁

𝐴
 (3)  

𝑁 is the internal force, and 𝐴 is the cross section area. 

Thermal strain  

𝜀𝑇ℎ = 𝛼𝛥𝑇 (4)  

𝜀𝑇ℎ is the thermal strain, 𝛼 is the thermal expansion coefficient of the material, 𝛥𝑇 is the 

temperature variation between two states in thermal equilibria. 

Strain energy density of the bar 

𝑈0 =
1

2
𝐸(𝜀𝑡𝑜𝑡 − 𝜀𝑇ℎ)2 (5)  

𝑈0 is the strain energy density of the bar, 𝜀𝑡𝑜𝑡 is the total strain of the bar, and 𝜀𝑇ℎ is the thermal 

strain of the bar. 
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Calculations 

a) In this section 𝛥𝑇 = 𝑇1 − 𝑇0. We calculate the load deformation thanks to Hooke’s law and stress 

and deformation definitions. 

𝜎 = 𝐸 · 𝜀 →
𝑁

𝐴
=

𝐹

𝐴
=

𝛥𝐿

𝐿0

· 𝐸 → 𝛥𝐿 =
𝐹 · 𝐿0

𝐸 · 𝐴
 (6)  

Using Eq. (6) and Eq. (4), we can calculate the total deformation, which is caused by both 

mechanical and thermal load. We apply the superposition principle and: 

𝛥𝐿𝑡𝑜𝑡 = 𝛥𝐿 + 𝜀𝑇ℎ𝐿0 =
𝐹 · 𝐿0

𝐸 · 𝐴
+  𝛼𝐿0𝛥𝑇 (7)  

 

b) We can now rewrite Eq. (5) in terms of strain: 

𝜀𝑡𝑜𝑡 =
𝛥𝐿𝑡𝑜𝑡

𝐿0
=

𝛥𝐿

𝐿0
+ 𝜀𝑇ℎ =

𝐹

𝐸 · 𝐴
+  𝛼𝛥𝑇 = 𝜀𝐹 + 𝜀𝑇ℎ (8)  

where 𝜀𝑇ℎ is the strain caused by the thermal expansion and 𝜀𝐹 is the strain caused by the load 𝐹. 

Therefore the strain energy is given by: 

𝑈0 =
1

2
𝐸(𝜀𝑡𝑜𝑡 − 𝜀𝑇ℎ)2 =

1

2
𝐸𝜀𝐹

2 =
1

2
𝐸 (

𝐹

𝐸 · 𝐴
)

2

 (9)  

 

c) In this section 𝛥𝑇 = 𝑇2 − 𝑇1. Since the beam is clamped, we can see that the 𝜀𝑡𝑜𝑡 = 0, thus: 

𝜀𝑡𝑜𝑡 = 𝜀𝑚𝑒𝑐ℎ + 𝜀𝑇ℎ =
𝜎

𝐸
+ 𝜀𝑇ℎ = 0 → 𝜎 = −𝐸𝜀𝑇ℎ = −𝐸𝛼𝛥𝑇 (10)  

State your answer 

a) 

𝛥𝐿𝑡𝑜𝑡 =
𝐹 · 𝐿0

𝐸 · 𝐴
+  𝛼(𝛥𝑇)𝐿0 = 

480 · 10 · 10−2

40 · 109 · 4 · 10−4
+ 10 · 10−6 · 475 · 10 · 10−2 = 478 𝜇𝑚 

(11)  

 

b) 

𝑈0 =
1

2
40 · 109 · (

480

40 · 109 · 4 · 10−4
)

2

=  18 
𝐽

𝑚3
 (12)  

 

c) 

𝜎 = −40 · 109 · 10 · 10−6 · (−700) =  280 𝑀𝑃𝑎 (13)  

The mechanical stress that builds up in the bar when cooling down is 280 MPa tensile.  
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Exercise 3b.2 – Plane Stress  

A square plate of width 𝑏 and thickness 𝑡 is loaded by normal forces 𝐹𝑥 and 𝐹𝑦, and by shear forces 

𝑉, as shown in Figure 3b.2. These forces produce uniformly distributed stresses acting on the side faces 

of the plate. Calculate the change in the volume 𝚫𝑽 = 𝑽𝒇𝒊𝒏𝒂𝒍 − 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 of the plate and strain energy 

𝑈 stored in the plate if the dimensions are 𝑏 = 600 𝑚𝑚 and 𝑡 = 40 𝑚𝑚, the plate is made of 

magnesium with 𝐸 = 45 𝐺𝑃𝑎 and 𝜈 = 0.35, and the forces are 𝐹𝑥 = 480 𝑘𝑁, 𝐹𝑦 = 180 𝑘𝑁, and 𝑉 =

120 𝑘𝑁. 

Formula for strain energy density in two dimensions. 

𝑢0 =
1

2
(𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜏𝑥𝑦𝛾𝑥𝑦) (1)  

 

 

Figure 3b.2 | Loads on a cube 
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Solution 3b.2 

Given: 

A block with multiple normal and shear loads, see in figure 3b.2: 

𝑏 = 600 𝑚𝑚  

𝑡 = 40 𝑚𝑚  

𝐸 = 45 𝐺𝑃𝑎   

𝜈 = 0.35  

𝐹𝑥 = 480 𝑘𝑁  

𝐹𝑦 = 180 𝑘𝑁  

𝑉 = 120 𝑘𝑁  

What is asked: 

a) Change in volume, 𝑉𝑓𝑖𝑛𝑎𝑙 − 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙. 

b) Strain energy stored in the block. 

Solution:  

a) The stresses in the material can be directly calculated from the loads, i.e.: 

𝜎𝑥 =
𝑁𝑥

𝐴
=

𝐹𝑥

𝐴
=

𝐹𝑥

𝑏𝑡
; 𝜎𝑦 =

𝐹𝑦

𝐴
=

𝐹𝑦

𝑏𝑡
; 𝜏𝑥𝑦 =

𝑉

𝐴
=

𝑉

𝑏𝑡
 (2) 

As we know from theory, applying the strain equations from the compliance matrix to Eq. (2) we 

can derive the following equation: 

𝑉𝑓𝑖𝑛𝑎𝑙 − 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙

=
(1 − 2𝜈)

𝐸
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) (3) 

Inserting values for the initial volume 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑏2 · 𝑡, 𝜎𝑥, and 𝜎𝑦 into Eq. (3) we obtain the 

following: 

𝑉𝑓𝑖𝑛𝑎𝑙 − 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = (𝑏2 ∙ 𝑡) ∙ [
(1 − 2𝜈)

𝐸 ∙ (𝑡 ∙ 𝑏)
] (𝐹𝑥 + 𝐹𝑦) = 𝑏

(1 − 2𝜈)

𝐸
(𝐹𝑥 + 𝐹𝑦) (4) 

𝑉𝑓𝑖𝑛𝑎𝑙 − 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 600 𝑚𝑚 ∙
1 − 2 ∙ 0.35

45 𝐺𝑃𝑎
(480 𝑘𝑁 + 180 𝑘𝑁) = 4 · 660 · 10−9 𝑚3 (5) 

𝑉𝑓𝑖𝑛𝑎𝑙 − 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 2.64 ∙ 10−6𝑚3 (6) 

b) Using Eq. (1) and substituting strains with stresses with 3D Hooke’s law, we are left with the 

following: 

𝑢0 =
1

2𝐸
(𝜎𝑥

2 + 𝜎𝑦 
2 − 2𝜈𝜎𝑥𝜎𝑦) +

𝜏𝑥𝑦
2

2𝐺
 (7) 

𝐺 =  
𝐸

2(1 + 𝜈)
 (8) 

Inserting the stresses from Eq. (2) into (7), we get the following: 

𝑢0 =
1

2𝐸
((

𝐹𝑥

𝑡 ∙ 𝑏
)

2

+ (
𝐹𝑦

𝑡 ∙ 𝑏
)

2

− 2𝜈 (
𝐹𝑥

𝑡 ∙ 𝑏
) (

𝐹𝑦

𝑡 ∙ 𝑏
)) +

1

2𝐺
(

𝑉

𝑡 ∙ 𝑏
)

2

 (9) 
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𝑢0 = 4653 𝑃𝑎 = 4653 𝐽/𝑚3 (10) 

Remember that 𝑢0 is the strain energy density, so the final result is: 

𝑈 = 𝑢0 · 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 4653
𝐽

𝑚3
· 6002 𝑚𝑚2 · 40 𝑚𝑚 = 67 𝐽 (11) 

Also keep in mind that the relative change in volume is very small so it is not going to make a 

difference whether we consider 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 or 𝑉𝑓𝑖𝑛𝑎𝑙 in Eq. (11). 
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Exercise 3b.3 – Hybrid stiffness – 3D structure  

A block of rubber (R on Figure 3b.3) is confined in a slot inside a steel block (S on Figure 3b.3). A 

uniform pressure 𝑝0 applied on the top of the rubber block induces a deformation. The rubber’s Young’s 

modulus 𝐸 and the rubber’s Poisson’s ratio 𝜈 are known.  

a) Give an expression for the pressure along 𝒙 axis on the block induced by 𝒑𝟎 and calculate 

its value 

▪ NB – We will neglect friction effects 

b) Give an expression for the dilatation e of the rubber and calculate its value 

▪ NB – The dilatation is also called the relative volume variation, i.e. 𝒆 =
𝜟𝑽

𝑽
 

c) Find the strain-energy density 𝒖𝟎 of the rubber 

Numerical values: 𝑝0 = 5.0 𝑀𝑃𝑎; 𝐸 = 15.0 𝐺𝑃𝑎;  𝜈 = 0.50 

 

Figure 3b.3| Block of rubber in a steel block 
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Solution 3b.3 

What is given? 

Pressure 𝑝0 = 5.0 𝑀𝑃𝑎 

Young’s modulus 𝐸 = 15.0 𝐺𝑃𝑎 

Poisson’s ratio 𝜈 = 0.50 

What is asked 

a) A formula for the lateral pressure on the block induced by 𝑝0 and calculate its value 

b) A formula for the dilatation e of the rubber and calculate its value 

c) The strain-energy density 𝑢0 of the rubber 

Equations required 

We will use the generalized Hooke’s law, or compliance matrix: 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈(𝜎𝑦 + 𝜎𝑧)) ; 𝛾𝑥𝑦 =

𝜏𝑥𝑦

𝐺
; 𝑒𝑡𝑐 … (1)  

Where 𝐸 is the Young’s modulus of the material, 𝜈 is the Poisson’s ratio, 𝜀𝑥 is the axial strain in the 

x-direction, and 𝜎𝑥 is the normal stress parallel to the 𝑥-axis, 𝜏𝑥𝑦 and 𝛾𝑥𝑦 are the shear stress and strain 

on the plane 𝑥𝑦, and 𝐺 is the shear modulus of the material. We then define the strain energy density in 

three dimensions: 

𝑢0 =
1

2𝐸
(𝜎𝑥

2 + 𝜎𝑦
2 + 𝜎𝑧

2) −
𝜈

𝐸
(𝜎𝑥𝜎𝑦 + 𝜎𝑥𝜎𝑧 + 𝜎𝑦𝜎𝑧) +

1

2𝐺
(𝜏𝑥𝑦

2 + 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 ) (2)  

We can also write the volume relative variation in relation with the stress components: 

𝛥𝑉

𝑉
=

1 − 2𝜈

𝐸
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) (3)  

Calculations 

a) The pressure is opposed to the internal stress of the material. We are looking for the pressure 

p along the 𝑥-direction. 

𝑝𝑥 = −𝜎𝑥 (4)  

We have been given the pressure in the y-direction. 

𝑝0 = −𝜎𝑦 (5)  

Then, no stress is induced in the z-direction, and being clamped, no strain can occur in the 𝑥 

direction: 

𝜎𝑧 = 0; 𝜀𝑥 = 0 (6)  

We apply the general Hooke’s law. 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈(𝜎𝑦 + 𝜎𝑧)) (7)  

i.e. using (4), (5) and (6) in (7): 

𝜀𝑥 = 0 = −𝑝
𝑥

− 𝜈(−𝑝
0
) (8)  

  

Thus, 

𝑝𝑥 = 𝜈𝑝0 (9)    
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b)  

𝛥𝑉

𝑉
=

1 − 2𝜈

𝐸
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) (10)  

i.e. 

𝛥𝑉

𝑉
=

1 − 2𝜈

𝐸
(−𝑝𝑥 − 𝑝0) = −

(1 − 2𝜈)(1 + 𝜈)𝑝0

𝐸
 (11)  

 

c) Using the formula of the strain energy, we substitute the different components of stress in all the 

directions. There is no shear due to the wall constraint and only the 𝑦 direction contributes: 

𝑢0 =
1

2𝐸
(1 − 𝜈2)𝑝0

2 (12)  

State your answer 

a) The lateral pressure is: 

𝑝𝑥 = 𝜈𝑝0 = 2.5 𝑀𝑃𝑎 (13)  

 

b) The relative change in volume is: 

𝛥𝑉

𝑉
= −

(1 − 2𝜈)(1 + 𝜈)𝑝0

𝐸
= 0 (14)  

There is no volume variation. The rubber keeps the same properties. 

 

c) The strain energy density (in 3D) is: 

𝑢0 =
1

2𝐸
(1 − 𝜈2)𝑝0

2 =
1

2

1 − 0.52

15 · 109
52 · 1012 𝑃𝑎 = 625 𝑃𝑎 = 625 

𝑁

𝑚2
= 625 

𝐽

𝑚3
 (15)  
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Exercise 3b.4 – Bars and spring in series 

A system 1) is composed of two different bars while a similar system 2) is instead formed by a spring 

and a bar, as shown in the Figure 3b.4 Both systems are loaded with forces in A, B and C, and the 

materials are considered isotropic.  

a) Draw the Free Body Diagram of the two systems  

Provided the numerical values for the systems: 

1) 𝐴 = 3 𝑐𝑚2, 𝐴∗ = 2 𝑐𝑚2, 𝐸 = 25 𝐺𝑃𝑎, 𝐿 = 10 𝑐𝑚, 𝐹1 = 30 𝑘𝑁, 𝐹2 = 45 𝑘𝑁, 𝐹3 = 75𝑘𝑁 

2) 𝐴 = 3 𝑐𝑚2, 𝐸 = 25 𝐺𝑃𝑎, 𝐿 = 10 𝑐𝑚, 𝐹1 = 30 𝑘𝑁, 𝐹2 = 45 𝑘𝑁, 𝐹3 = 75𝑘𝑁, 𝑘𝑠 = 1 ∙ 108 𝑘𝑔

𝑠2  

b) Calculate the deformation of the two different systems  

1)                                        2)  

Figure 3b.4 | Composite posts: 1) bar/bar  and  2) spring/bar  
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Solution 3b.4 

a) The FBD is equal for both the systems since the spring can be seen as a bar  

 

The structure can be divided as shown in figure 3b4.1 in order to calculate the internal forces: 

 
 

Figure 3b.4.1 | Composite posts: cuts to be done  

What are the Eqs. that are required? 

The stiffness of a segment CD: 

3 

2 

1 
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𝑘𝐶𝐷 =
𝐴𝐸

𝐿𝐶𝐷
 (1)  

The stiffness of a segment CB: 

𝑘𝐶𝐵 =
𝐴𝐸

𝐿𝐶𝐵
 (2)  

The stiffness of a segment AB, system a): 

𝑘𝐴𝐵 =
𝐴∗𝐸

𝐿𝐴𝐵
 (3)  

While for system 2) is it equal to the stiffness of the spring 𝑘𝑠  

Where A and 𝐴∗ are the cross-section area of segments, 𝐿𝐴𝐵, 𝐿𝐶𝐵 𝑎𝑛𝑑 𝐿𝐶𝐷, are the length and E the 

Young’s modulus. 

The internal force of a segment with respect to the displacement: 

𝑁 = 𝑘∆ (4)  

Find Reaction at Point D 

∑ 𝐹𝑥 = 0 (5)  

−𝑅𝐷 + 75𝑘𝑁 − 45 𝑘𝑁 + 30 𝑘𝑁 = 0 → 𝑅𝐷 = 60 𝑘𝑁 (6)  

b)  The deformation of the two systems can be calculated using 

𝛿𝑎 = ∑

𝑖

𝑁𝑖𝐿𝑖

𝐴𝑖𝐸
=

1

𝐸
(

𝑁1 ∗ 2𝐿

𝐴
+

𝑁2 ∗ 2𝐿

𝐴
+

𝑁3 ∗ 𝐿

𝐴∗
) (7)  

𝛿𝑏 =
1

𝐸
(

𝑁1 ∗ 2𝐿

𝐴
+

𝑁2 ∗ 2𝐿

𝐴
) +

𝑁3

𝑘𝑠
 (8)  

From figure 3b.4.1 can be seen that:  

𝑁1 = 60 𝑘𝑁 

𝑁2 = −15 𝑘𝑁 

𝑁3 =  30 𝑘𝑁  

 

Plugging the numbers in (7) and (8) can be calculated the displacement: 

𝛿𝑎 =
1

25 ∗ 109 (
60 ∗ 103 ∗ 0.2

3 ∗ 10−4
−

15 ∗ 103 ∗ 0.2

3 ∗ 10−4
+

30 ∗ 103 ∗ 0.1

2 ∗ 10−4 ) = 0.0018 = 1.8 𝑚𝑚 (9) 

𝛿𝑏 =
1

25 ∗ 109 (
60 ∗ 103 ∗ 0.2

3 ∗ 10−4
−

15 ∗ 103 ∗ 0.2

3 ∗ 10−4 ) +
30 ∗ 103

108
= 0.0015 = 1.5 𝑚𝑚 (10) 
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Exercise 3b.5 – Composed post  

A post is composed of two different elements: a cube of height 3L between C and E (Young’s 

modulus ECE) and a square based tempered post with a of height 6L between A and C (Young’s modulus 

EAC). As shown in figure 3b.5, the section varies from A (side length 2L) to C (side length 3L) and two 

forces are applied to the system at point A and C. The amplitude of the force at point C is 2F and the 

amplitude of the force at point A is F. The materials are considered isotropic.  

a) Draw the Free Body Diagram of the system and calculate the reaction force(s) 

b) Calculate the value of the stress and strain of the post at section D 

c) Calculate the value of the stress and strain of the post at section B 

d) Calculate the deformation of the segment AC 

𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝐻𝑖𝑛𝑡 ∶ ∫
𝑑𝑥

(𝑎 + 𝑏𝑥)2
= −

1

𝑏(𝑎 + 𝑏𝑥)
 

 

Figure 3b.5| Composed post 
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Solution  3b.5 

a) Draw the Free Body Diagram of the system and calculate the reaction force(s).  

Apply force equilibrium Eq. to the entire structure and evaluate RE.  

 

∑ 𝐹𝑦 = 0 → −𝑅𝐸 + 2𝐹 − 𝐹 = 0 → 𝑅𝐸 = 𝐹 (1) 

b) Calculate the value of the stress and strain of the post at section D  

 

For the segment from E to D the area of the section is: 

 

𝐴 = (3𝐿)2 = 9𝐿2  

Segment DE  

 

∑ 𝐹𝑦 = 0 →    −𝑅𝐸 + 𝑁𝐷 = 0    𝑁𝐷 = 𝑅𝐸 = 𝐹 (2) 

For the evaluation of the stress and the strain of the post at section D  

𝜎𝐷 =
𝑁𝐷

𝐴𝐷
 =

𝐹

9𝐿2
 (3) 

Strain is: 

𝜀𝐷 =
𝜎𝐷

𝐸𝐶𝐸
=

𝐹

9𝐿2𝐸𝐶𝐸
  (4) 
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c) Calculate the value of the stress and strain of the post at section B 

Segment AB  

 

 

∑ 𝐹𝑦 = 0 → −𝐹 + −𝑁𝐵 = 0 → 𝑁𝐵 = −𝐹 (5) 

 

 For the segment from A to C the dimension of the square follows these formulas: 

𝑙(𝑦) = 𝐿 (2 +
1

6

𝑦

𝐿
) (6) 

𝐴(𝑦) = 𝐿2 (2 +
1

6

𝑦

𝐿
)

2

 (7) 

 or 

𝑙(𝑦) = 𝐿 (3 −
1

6

𝑦

𝐿
) 

𝐴(𝑦) = 𝐿2 (3 −
1

6

𝑦

𝐿
)

2

 

 

 The area of section B is: 

𝐴(𝐿) = 𝐿2 (2 +
𝐿

6𝐿
)

2

=
169

36
𝐿2 (8) 

 or 

𝐴(5𝐿) = 𝐿2 (3 −
5𝐿

6𝐿
)

2

=
169

36
𝐿2 

 

 

 For the evaluation of the stress and the strain of the post at section B  

𝜎𝐵 =
𝑁𝐵

𝐴𝐵
 =

−𝐹

169
36 𝐿2

= −
36𝐹

169𝐿2
 (9) 

Strain is: 

𝜀𝐵 =
𝜎𝐵

𝐸𝑆
 = −

36𝐹

169𝐿2𝐸𝐴𝐶
  (10) 
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d) Calculate the deformation of the segment AC  
 

Since the section varies along the axis is necessary to integrate between the tip of the post A and 

the section C.  

 

The elongation can be evaluated with: 

𝑑𝛿 =
−𝐹𝑑𝑦

𝐸𝐴𝐶𝐴(𝑦)
 (11) 

By integrating (from A to C): 

𝛿𝐴𝐶 = ∫
6𝐿

0

−𝐹𝑑𝑦

𝐸𝐴𝐶𝐴(𝑦)
 (12) 

𝛿𝐴𝐶 =
−𝐹

𝐸𝐴𝐶𝐿2
∫

6𝐿

0

𝑑𝑦

(2 +
𝑦

6𝐿
)

2  = −
𝐹

𝐸𝐴𝐶𝐿2 [−
6𝐿

2 +
𝑦

6𝐿

]

0

6𝐿

 (13) 

= −
𝐹

𝐸𝐴𝐶𝐿2
(−2𝐿 + 3𝐿)  = −

𝐹𝐿

𝐸𝐴𝐶𝐿2
= −

𝐹

𝐸𝐴𝐶𝐿
 

 

Or (from C to A) 

𝛿𝐴𝐶 = ∫
6𝐿

0

−𝐹𝑑𝑦

𝐸𝐴𝐶𝐴(𝑦)
 

𝛿𝐴𝐶 = −
𝐹

𝐸𝐴𝐶𝐿2
∫

6𝐿

0

𝑑𝑦

(3 −
𝑦

6𝐿)
2  = −

𝐹

𝐸𝐴𝐶𝐿2 [−
6𝐿

3 −
𝑦

6𝐿

]

0

6𝐿

= −
𝐹

𝐸𝐴𝐶𝐿2
(−2𝐿 + 3𝐿) = −

𝐹𝐿

𝐸𝐴𝐶𝐿2
= −

𝐹

𝐸𝐴𝐶𝐿
 

The segment AC is compressed and shortens of a quantity equal to: 
𝐹

𝐸𝐴𝐶𝐿
 

 


